skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gromodka, Erik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Brain rhythms of sleep reflect neuronal activity underlying sleep‐associated memory consolidation. The modulation of brain rhythms, such as the sleep slow oscillation (SO), is used both to investigate neurophysiological mechanisms as well as to measure the impact of sleep on presumed functional correlates. Previously, closed‐loop acoustic stimulation in humans targeted to the SO Up‐state successfully enhanced the slow oscillation rhythm and phase‐dependent spindle activity, although effects on memory retention have varied. Here, we aim to disclose relations between stimulation‐induced hippocampo‐thalamo‐cortical activity and retention performance on a hippocampus‐dependent object‐place recognition task in mice by applying acoustic stimulation at four estimated SO phases compared to sham condition. Across the 3‐h retention interval at the beginning of the light phase closed‐loop stimulation failed to improve retention significantly over sham. However, retention during SO Up‐state stimulation was significantly higher than for another SO phase. At all SO phases, acoustic stimulation was accompanied by a sharp increase in ripple activity followed by about a second‐long suppression of hippocampal sharp wave ripple and longer maintained suppression of thalamo‐cortical spindle activity. Importantly, dynamics of SO‐coupled hippocampal ripple activity distinguished SOUp‐state stimulation. Non‐rapid eye movement (NREM) sleep was not impacted by stimulation, yet preREM sleep duration was effected. Results reveal the complex effect of stimulation on the brain dynamics and support the use of closed‐loop acoustic stimulation in mice to investigate the inter‐regional mechanisms underlying memory consolidation. 
    more » « less